Normalized solutions for a Choquard equation with exponential growth in $$\mathbb {R}^{2}$$
نویسندگان
چکیده
In this paper, we study the existence of normalized solutions to following nonlinear Choquard equation with exponential growth \begin{align*} \left\{ \begin{aligned} &-\Delta u+\lambda u=(I_{\alpha}\ast F(u))f(u), \quad \hbox{in }\mathbb{R}^{2},\\ &\int_{\mathbb{R}^{2}}|u|^{2}dx=a^{2}, \end{aligned} \right. \end{align*} where $a>0$ is prescribed, $\lambda\in \mathbb{R}$, $\alpha\in(0,2)$, $I_{\alpha}$ denotes Riesz potential, $\ast$ indicates convolution operator, function $f(t)$ has in $\mathbb{R}^{2}$ and $F(t)=\int^{t}_{0}f(\tau)d\tau$. Using Pohozaev manifold variational methods, establish above problem.
منابع مشابه
Existence of nontrivial weak solutions for a quasilinear Choquard equation
We are concerned with the following quasilinear Choquard equation: [Formula: see text] where [Formula: see text], [Formula: see text] is the p-Laplacian operator, the potential function [Formula: see text] is continuous and [Formula: see text]. Here, [Formula: see text] is the Riesz potential of order [Formula: see text]. We study the existence of weak solutions for the problem above via the mo...
متن کاملInfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملMultiple Solutions to a Magnetic Nonlinear Choquard Equation
We consider the stationary nonlinear magnetic Choquard equation (−i∇+ A(x))u+ V (x)u = (
متن کاملMultiple solutions of the quasi relativistic Choquard equation
Articles you may be interested in Multi-peak solution for nonlinear magnetic Choquard type equation Smooth soliton solutions of a new integrable equation by Qiao Optimal solution for the viscous nonlinear dispersive wave equation We prove existence of multiple solutions to the quasirelativistic Choquard equation with a scalar potential. C 2012 American Institute of Physics.
متن کاملinfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{r}^n$
using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{r}^n$. the existence of nontrivial solution is established under a new set of hypotheses on the potential $v(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für Angewandte Mathematik und Physik
سال: 2023
ISSN: ['1420-9039', '0044-2275']
DOI: https://doi.org/10.1007/s00033-023-01994-y